First total synthesis of carbazomycin C and D^1

Hans-Joachim Knölker* and Georg Schlechtingen

Institut für Organische Chemie, Universität Karlsruhe, Richard-Willstätter-Allee, 76131 Karlsruhe, Germany

The first total synthesis of the antibiotic carbazomycins C and D using a convergent iron-mediated construction of the carbazole framework is described.

The carbazomycins isolated from Streptoverticillium ehimense were the first antibiotics to contain a carbazole framework.² Moreover, the carbazomycins B and C were shown to inhibit 5lipoxygenase.^{2h} The biological activity and unusual structure of the carbazomycins stimulated the development of diverse strategies directed towards their total synthesis.³ We reported a novel methodology, via iron-mediated consecutive C-C and C-N bond formation, for the coupling of cyclohexa-1,3-diene and the corresponding arylamine, which was applied to the total synthesis of carbazomycin A, B and E.⁴ Here we describe an extension of our method which is used for the first total synthesis of carbazomycin C 1,^{2f} carbazomycin D 2^{2f} and the nonnatural 4-deoxycarbazomycin C 3. Retrosynthetic analysis of the carbazomycins 1-3 based on the iron-mediated construction of the carbazole framework leads to tricarbonyl-[3-methoxy-(1,2,3,4,5-n)-cyclohexadienyl]iron tetrafluoroborate 4 and the arylamines 5 (Scheme 1). Complex 4 is readily

CH3

 BF_4

available in 3 steps from 1,3-dimethoxybenzene.⁵ The arylamines 5 have been described by us in our previous studies.6,7

The synthesis of the alkaloids 2 and 3 was achieved by the iron-mediated guinone imine cyclization (Scheme 2). Electrophilic substitution of the arylamines 5a and 5b with 4 provided the complexes 6a and 6b. Chemoselective oxidation of the aromatic nucleus to afford 7a and 7b was achieved with commercial manganese dioxide.[†] Oxidative cyclization of the quinone imines using very active manganese dioxide⁸ provided the stable tricarbonyliron-complexed 4b,8a-dihydrocarbazol-3ones 8 and 9. In the case of 7a the desired 6-methoxy substituted regioisomer 9a was exclusively isolated (46% yield), while 7b gave minor quantities (4%) of the 8-methoxy isomer 8b along with 38% of the 6-methoxy isomer 9b. The regioselectivity of these cyclizations can be rationalized by the results previously obtained in our deuterium labelling studies.⁹ Cyclizations with two-electron oxidants, such as manganese dioxide, initially lead to the product resulting from exclusive attack at C-4 of the cyclohexadiene ligand, which is represented by isomer 8 in the present case. However, a subsequent proton-catalysed isomerization of the kinetic product may occur. The isomerization of 8 to 9 is overriding due to the well-established regio-directing effect¹⁰ of the 2-methoxy substituent of the intermediate cyclohexadienylium cation 11, which forces the nucleophile to attack at the 5-position (Scheme 3). Consequently, the protoncatalysed isomerization of 8b results in smooth conversion to

805958).

DCH3

CHa

ćна

the desired 6-methoxy isomer **9b**. The tricarbonylironcomplexed 4b,8a-dihydrocarbazol-3-ones are useful synthetic precursors for 3-hydroxy-9*H*-carbazole alkaloids.¹¹ Thus, demetallation of the complexes **9a** and **9b** using trimethylamine *N*-oxide ¹² afforded the 3-hydroxycarbazole derivatives **10a** and **10b**, which after *O*-methylation gave 4-deoxycarbazomycin C **3** and carbazomycin D **2**.[‡]

Carbazomycin C **1** was obtained *via* the iron-mediated arylamine cyclization. Electrophilic substitution of the aminophenol **5c** by **4** afforded the complex **6c** which was transformed into the acetate **6d** (Scheme 2). Oxidative cyclization of **6d** using very active manganese dioxide⁸ to give the carbazole **12** followed by saponification of the ester provided carbazomycin C **1** (Scheme 4).§

Scheme 4 Reagents and conditions: i, very active MnO₂, CH_2Cl_2 , 25 °C; ii, NaOH, H₂O, reflux

[‡] This synthesis affords carbazomycin D **2** in 5 steps and 23% overall yield based on **4** as pale yellow needles, mp 125 °C (from cyclohexane) (lit.,^{2*f*} mp 129.5–130 °C, colourless needles from hexane-dichloromethane). All spectral data (UV, IR, ¹H and ¹³C NMR, MS) are in full agreement with those reported for the natural product.

§ Carbazomycin C 1 was obtained in 4 steps and 25% overall yield based on 4 as colourless crystals, mp 190–191 °C (from hexane–ethyl acetate) (lit.,² mp 198–198.5 °C, pale yellow prisms from hexane–ethyl acetate). All spectral data (UV, IR, ¹H and ¹³C NMR, MS) are in full agreement with those reported for the natural product.

Acknowledgements

We thank the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie for financial support of our project. We are grateful to the BASF AG, Ludwigshafen, for a generous gift of pentacarbonyliron.

References

- 1 Part 34 of transition metal complexes in organic synthesis. Part 33: H.-J. Knölker and C. Hofmann, *Tetrahedron Lett.*, 1996, **37**, 7947.
- (a) K. Sakano, K. Ishimaru and S. Nakamura, J. Antibiot., 1980, 33, 683; (b) K. Sakano and S. Nakamura, J. Antibiot., 1980, 33, 961;
 (c) M. Kaneda, K. Sakano, S. Nakamura, Y. Kushi and Y. Iitaka, Heterocycles, 1981, 15, 993; (d) K. Yamasaki, M. Kaneda, K. Watanabe, Y. Ueki, K. Ishimaru, S. Nakamura, R. Nomi, N. Yoshida and T. Nakajima, J. Antibiot., 1983, 36, 522; (e) S. Kondo, M. Katayama and S. Marumo, J. Antibiot., 1986, 39, 727;
 (f) T. Naid, T. Kitahara, M. Kaneda and S. Nakamura, J. Antibiot., 1987, 40, 157; (g) M. Kaneda, T. Naid, T. Kitahara and S. Nakamura, J. Antibiot., 1988, 41, 602; (h) D. J. Hook, J. J. Yacobucci, S. O'Connor, M. Lee, E. Kerns, B. Krishnan, J. Matson and G. Hesler, J. Antibiot., 1990, 43, 1347.
- 3 U. Pindur, *Chimia*, 1990, **44**, 406; J. Bergman and B. Pelcman, *Pure Appl. Chem.*, 1990, **62**, 1967; D. P. Chakraborty, in *The Alkaloids*, ed. A. Brossi, Academic Press, New York, 1993, vol. 44, p. 257; C. J. Moody, *Synlett*, 1994, 681.
- 4 H.-J. Knölker, in Organic Synthesis via Organometallics, ed. K. H. Dötz and R. W. Hoffmann, Vieweg, Braunschweig, 1991, p. 119; H.-J. Knölker, Synlett, 1992, 371; H.-J. Knölker, in Advances in Nitrogen Heterocycles, ed. C. J. Moody, JAI Press, Greenwich, CT, 1995, vol. 1, p. 173.
- 5 A. J. Birch, L. F. Kelly and D. J. Thompson, J. Chem. Soc., Perkin Trans. 1, 1981, 1006.
- 6 H.-J. Knölker, M. Bauermeister, J.-B. Pannek, D. Bläser and R. Boese, *Tetrahedron*, 1993, **49**, 841.
- 7 H.-J. Knölker and M. Bauermeister, *Helv. Chim. Acta*, 1993, **76**, 2500.
- 8 A. J. Fatiadi, Synthesis, 1976, 65.
- 9 H.-J. Knölker, F. Budei, J.-B. Pannek and G. Schlechtingen, *Synlett*, 1996, 587.
- 10 A. J. Birch, K. B. Chamberlain, M. A. Haas and D. J. Thompson, J. Chem. Soc., Perkin Trans. 1, 1973, 1882; A. J. Pearson, Acc. Chem. Res., 1980, 13, 463; A. J. Pearson, Metallo-organic Chemistry, Wiley, Chichester, 1985, ch. 8.
- 11 H.-J. Knölker, M. Bauermeister, J.-B. Pannek and M. Wolpert, Synthesis, 1995, 397.
- 12 Y. Shvo and E. Hazum, J. Chem. Soc., Chem. Commun., 1974, 336; H.-J. Knölker, J. Prakt. Chem., 1996, 338, 190.

Paper 6/08351J Received 12th December 1996 Accepted 18th December 1996